
Functional Programming in Education

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

15th May 2019

george.wilson@data61.csiro.au

University
First year, first semester

Which language?

class Hello {

public static void main(String[] args) {
System.out.println("Hello, world!");

}

}

Content
Week 1 Basic expressions
Week 2 procedure declarations
Week 3 if-statement
Week 4 while-statement
Week 5 for-statement
. . .

(define (factorial n)
(if (<= n 1)

1
(* n (factorial (- n 1)))))

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Evaluation by substitution

(define (sum-of-squares x y)
(+ (sqr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sqr 3) (sqr 4))

=> (+ (* 3 3) (sqr 4))

=> (+ 9 (sqr 4))

=> (+ 9 (* 4 4))

=> (+ 9 16)

=> 25

Incredible breadth of content

complexity analysis

symbolic computation with quotation

interpreters

object-oriented programming

logic programming

many other concepts

(or similar)

data List a
= Nil
| Cons a (List a)

(define (sum items)
(cond ((null? items) 0)

(else (+ (car items) (sum (cdr items))))))

sum items = case items of
Nil -> 0
Cons x xs -> x + sum xs

(define (sum items)
(cond ((null? items) 0)

(else (+ (car items) (sum (cdr items))))))

sum items = case items of
Nil -> 0
Cons x xs -> x + sum xs

(define (new-if predicate then-clause else-clause)
(cond (predicate then-clause)

(else else-clause)))

newIf True t f = t
newIf False t f = f

(define (new-if predicate then-clause else-clause)
(cond (predicate then-clause)

(else else-clause)))

newIf True t f = t
newIf False t f = f

Criticisms

Examples are drawn from overly-technical domains

(define (deriv exp var)
(cond ((number? exp) 0)

((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)

(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)

(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)

(multiplicand exp))))
(else
(error "unknown expression type -- DERIV" exp))))

Criticisms

Lacking coverage of foundational problem-solving techniques

From an educational point of view, our experience suggests that undergraduate
computer science courses should emphasize basic notions of modularity, specification, and

data abstraction , and should not let these be displaced by more advanced topics, such as
design patterns, object-oriented methods, concurrency, functional languages, and so on.

— Jackson and Chapin, 2000 (emphasis mine)

HTDP

SICP

Wadler '87

???

HTDP

SICP

Wadler '87

3 + False

<interactive>:1:1: error:
• No instance for (Num Bool) arising from a use of ‘+’
• In the expression: 3 + False

In an equation for ‘it’: it = 3 + False

GHC custom type errors

{-# language DataKinds, TypeFamilies, TypeOperators #-}
{-# language UndecidableInstances #-}

import GHC.TypeLits

instance TypeError (Text "Booleans are not numbers" :$$:
Text "so we cannot add or multiply them")

=> Num Bool where

3 + False

<interactive>:1:1: error:
• Booleans are not numbers

so we cannot add or multiply them
• In the expression: 3 + False

In an equation for ‘it’: it = 3 + False

Custom preludes for a staged introduction

Prelude.hs
module Prelude
(Integer, (+)
)

where

import GHC.Num (Integer)
import qualified GHC.Num as N

(+) :: Integer -> Integer -> Integer
(+) = (N.+)

A brief personal anecdote. . .

Thanks for listening!

References

• Structure and Interpretation of Computer Programs
Harold Abelson and Gerald Jay Sussman with Julie Sussman

• A Critique of Abelson and Sussman
Philip Wadler

• The Structure and Interpretation of the Computer Science Curriculum
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi

• How to Design Programs
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi

• The Risks and Benefits of Teaching Purely Functional Programming in First Year
Manuel Chakravarty and Gabriele Keller

