Functional Programming in Education

George Wilson

Data61/CSIRO

george.wilson@datab1.csiro.au
15th May 2019

e

I OATA
bl

N~

george.wilson@data61.csiro.au

University
First year, first semester

Which language?

class Hello {

public static void main (String[] args) {
System.out.println ("Hello, world!");
}

‘ Content

Week 1 | Basic expressions

Week 2 | procedure declarations

Week 3 | if-statement

Week 4 | while-statement

Week 5 | for-statement

Structure and
Interpretation
of Computer
Programs

Second Edition

Harold Abelson and
Gerald Jay Sussman
with Julie Sussman

(define (factorial n)
(if (<= n 1)
1
(» n (factorial (- n 1)))))

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)

=> (+ (sgr 3) (sqgr 4))

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)
=> (+ (sgr 3) (sqgr 4))
=> (+ (» 3 3) (sqr 4))

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)
=> (+ (sgr 3) (sqgr 4))
=> (+ (» 3 3) (sqr 4))

=> (+ 9 (sqr 4))

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)
=> (+ (sqgr 3) (sqgr 4))
=> (+ (% 3 3) (sqr 4))
=> (+ 9 (sqgr 4))
=> (+ 9 (x 4 4))

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)
=> (+ (sqgr 3) (sqgr 4))
=> (+ (% 3 3) (sqr 4))
=> (+ 9 (sqgr 4))
=> (+ 9 (x 4 4))
= (+ 9 16)

Evaluation by substitution

(define (sum-of-squares x V)
(+ (sgr x) (sqr y)))

(sum-of-squares 3 4)
=> (+ (sqgr 3) (sqgr 4))
=> (+ (% 3 3) (sqr 4))
=> (+ 9 (sqgr 4))
=> (+ 9 (x 4 4))
= (+ 9 16)
=> 25

({factoreial 6}
{(* & [(factcocrial 5)j}

f(* & (* 5 (factorial 4))}
f(* & (* 5 (* 4 {factorial 31})}

f* 6§ (* 5 (* 4 {* 3 (factorial 2)13)1}

f(* 6§ (* 5 (* 4 {(* 3 (* 2 {factorial 13}1311}
(r 6 (* 5 (* &4 (* F (¥ 2 13332}

(* 6 (* 5 (* 4 (* F 2310

(* & (* 5 (* 4 6)})

(* & (* 5]

(* & 120}

T20

Incredible breadth of content
complexity analysis
symbolic computation with quotation
interpreters
object-oriented programming
logic programming

many other concepts

A critique of Abelson and Sussman \
-0r -
Why calculating is better than scheming

itccund dpal 176

Philip Wadler
Programming Research Group
11 Keble Road
Oxford, 0X1 3QD

(or similar)

data List a
= Nil
| Cons a (List a)

(define (sum items)
(cond ((null? items) O0)
(else (+ (car items) (sum (cdr items))))))

(define (sum items)
(cond ((null? items) 0)

(else (+ (car items) (sum (cdr items))))))
sum items = case items of
Nil > 0

Cons xXx XS —> X + sum XS

(define (new—-1if predicate then-clause else-clause)
(cond (predicate then-clause)
(else else-clause)))

(define (new—-1if predicate then-clause else-clause)
(cond (predicate then-clause)
(else else-clause)))

[
o+

newlf True t f =
newIf False t f

I
H

The Structure and Interpretation of the
Computer Science Curriculum

Matthias Felleisen, Northeastern University, Boston, MA, USA
Robert Bruce Findler, University of Chicago, Chicago, IL, USA
Matthew Flatt, University of Utah, Salt Lake City, UT, USA
Shriram Krishnamurthi, Brown University, Providence, RI, USA

Email: {matthias,robby,mflatt shriram}@plt-scheme.org

(define
(cond

Criticisms
Examples are drawn from overly-technical domains

(deriv exp var)
((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
(else
(error "unknown expression type -- DERIV" exp))))

Criticisms

Lacking coverage of foundational problem-solving techniques

From an educational point of view, our experience suggests that undergraduate
computer science courses should emphasize basic notions of modularity, specification, and

data abstraction , and should not let these be displaced by more advanced topics, such as
design patterns, object-oriented methods, concurrency, functional languages, and so on.

— Jackson and Chapin, 2000 (emphasis mine)

HOW TO DESIGN PROGRAMS

Second Edition

An Introduction to Programming and Computing

Matthias Rabert Bruce Matthew Shriram
Felleisen Findler Flatt Krishnamurthi

") prologue.rkt - DrRacket

File Edit View Language Racket Insert Scripts Tabs Help
prologue.rktw (define..) v

(reguire Zhtdp/image)
(require 2Zhtdp/universe)

A

{define (picture-of-rocket height)
(place-image rocket 50 height (empty-scene 100 &0)))

{define rocket

)

(define (sign x)
(cond ((> = 0} 1)
(== 0) 0)
(< x0) -1}))

(define (picture-of-rocket.v2 height)
(cond
[(<= height €0)
(place—image 50 height
(empty-scene 100 &€0))]
[(> height &0)
(place-image 50 &0
(empty-scene 100 &0))]))

Welcome to DrRacket, version 7.2 [3m].

Language: Beginning Student; memory limit: 128 MB.

> (picture-of-rocket.v2 S5555)

place-image: expects 4 arguments, but found only 3
> |

Choose Language x

(O The Racket Language (ctl-R)
Start your program with #lang to specify the
desired dialect. For example:

#lang racket [
#lang racket/base [docs]
#lang typed/racket [
#lang scribble/base [

... and many more

@Teaching Languages (ctl-T)

How to Design Programs
Beginning Student

udent with List Abbreviations
Intermediate Student
Intermediate Student with lambda
Advanced Student

DeinProgramm

Die Macht der Abstraktion - Anfénger

Die Macht der Abstraktion

Die Macht der Abstraktion mit Zuweisungen
Die Macht der Abstraktion - fortgeschritten

(O Other Languages (ctl-0)

Show Details Cancel

2\ Untitled - DrRacket* — m| X
File Edit View Language Racket Insert 5Scripts Tabs Help

Untitled = (define ..~ bﬁ Debug b;i Check Syntax @¢ Run D Stop i

Welcome to DrRacket, version 7.2 [3m].

Language: Advanced Student; memory limit: 128 MB.

> (cons 3 4)

co‘ns: second argument must be a list, but received 3 and 4
>

All expressions are covered Show next time? €3

52 annarme[g

Strings aren’t compared with = and its relatives. Instead, you must use string=7? or
string<=7 or string>=7 if you ever need to compare strings. While it is obvious that
string=7 checks whether the two given strings are equal, the other two primitives are

open to interpretation. KLY GUHRITEIRe Tl TN Or, experiment, guess a general law,
and then check in the documentation whether you guessed right.

If the documentation in HelpDesk appears confusing, experiment with the functions in the
interactions area. Give them appropriate arguments, and find out what they compute.
Also use inappropriate arguments for some operations just to find out how BSL reacts:

> (string-length 42)
string-length:expects a string, given &2

e s sy aeama 31 e menraes gamarenes

—

w

o

on software design.

. From Problem Analysis to

Data Definitions

Identfy the information that must be represented and how it is represented in the chosen
programming language. Formulate data definidons and illustrate them with examples.

. Signature, Purpose Statement, Header

State what kind of data the desired function consumes and produces. Formulate a concise answer to
the question what the function computes. Define a stub that lives up to the signature.

. Functional Examples

Work through examples that illustrate the function’s purpose.

. Function Template

Translate the data definitions into an outline of the function.

. Function Definition

Fill in the gaps in the function template. Exploit the purpose statement and the examples.

Testing

Articulate the examples as tests and ensure that the functon passes all. Doing so discovers mistakes,
Tests also supplement examples in that they help others read and understand the definition when the

need arises—and it will arise for any serious program.

Figure 1: The basic steps of a function design recipe

HTDP

Wadler '87

N

SICP

?77?

AN

HTDP

Wadler '87

N

SICP

3 + False

<interactive>:1:1: error:
+ No instance for (Num Bool) arising from a use of ‘+’/
+ In the expression: 3 + False
In an equation for ‘it’: it = 3 + False

GHC custom type errors

{—# language DataKinds, TypeFamilies, TypeOperators #-}
{—# language UndecidableInstances #-}

import GHC.Typelits

(Text "Booleans are not numbers" :8$:

instance TypeError
Text "so we cannot add or multiply them")

=> Num Bool where

3 + False

<interactive>:1:1: error:
- Booleans are not numbers
so we cannot add or multiply them
+ In the expression: 3 + False
In an equation for ‘it’: it = 3 + False

Custom preludes for a staged introduction

Prelude.hs

module Prelude
(Integer, (+)
)

where

import GHC.Num (Integer)
import qualified GHC.Num as N

(+) :: Integer —> Integer —> Integer
(+) = (N.+)

A brief personal anecdote. . .

Thanks for listening!

References

e Structure and Interpretation of Computer Programs
Harold Abelson and Gerald Jay Sussman with Julie Sussman

e A Critique of Abelson and Sussman

Philip Wadler
® The Structure and Interpretation of the Computer Science Curriculum

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi
® How to Design Programs

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi

® The Risks and Benefits of Teaching Purely Functional Programming in First Year
Manuel Chakravarty and Gabriele Keller

