
Laws!

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

28th August 2018

george.wilson@data61.csiro.au

class Monoid m where
mempty :: m
(<>) :: m -> m -> m

Left identity: mempty <> y = y

Right identity: x <> mempty = x

Associativity: (x <> y) <> z = x <> (y <> z)

class Monoid m where
mempty :: m
(<>) :: m -> m -> m

Left identity: mempty <> y = y

Right identity: x <> mempty = x

Associativity: (x <> y) <> z = x <> (y <> z)

data Sum = Sum Int

instance Monoid Sum where
mempty = Sum 0
Sum x <> Sum y = Sum (x + y)

Left identity:
0 + y = y

Right identity:
x + 0 = x

Left identity:
0 + 5 = 5

Right identity:
x + 0 = x

Left identity:
0 + 5 = 5

Right identity:
7 + 0 = 7

Associativity:
3 + 4 + 5

(3 + 4) + 5 3 + (4 + 5)

3 4

+

+

5

4

3

+

+

5

7

+

5

4

3

+

+

5

12

4

3

+

+

5

12

3

+

9

12 12

So?

+

1 +

+

+

4+

5 6

+

2

7

3

+

1 2

+

+

+ +

+

65

7

43

+

+

+

+

+

6

1

7

+

5

4

3

2

2

3

+

1

4

+

6

+

5

+

+

+

7

mconcat :: Monoid m => [m] -> m

mconcat list =
case list of
[] -> mempty
(h:t) -> h <> mconcat t

mconcat :: Monoid m => [m] -> m

mconcat list =
case list of

[] -> mempty
(h:t) -> h <> mconcat t

mconcat [Sum 1, Sum 2, Sum 3, Sum 4]

Sum 1 <> (Sum 2 <> (Sum 3 <> (Sum 4 <> mempty)))

==> Sum 10

mconcat [Sum 1, Sum 2, Sum 3, Sum 4]

Sum 1 <> (Sum 2 <> (Sum 3 <> (Sum 4 <> mempty)))

==> Sum 10

mconcat [Sum 1, Sum 2, Sum 3, Sum 4]

Sum 1 <> (Sum 2 <> (Sum 3 <> (Sum 4 <> mempty)))

==> Sum 10

phantom

mconcatR :: NotMonoid m => [m] -> m

mconcatR list =
case list of

[] -> mempty
(h:t) -> h <> mconcatR t

phantom

mconcatR :: NotMonoid m => [m] -> m

mconcatR list =
case list of

[] -> mempty
(h:t) -> h <> mconcatR t

mconcatL :: NotMonoid m => [m] -> m

mconcatL list =
helper mempty list
where
helper acc xs =
case xs of

[] -> acc
(h:t) -> helper (acc <> h) t

foldr :: (a -> b -> b) -> b -> [a] -> b

foldl :: (b -> a -> b) -> b -> [a] -> b

Laws give us freedom when working in terms of our abstractions

instance Monoid [a] where
mempty = []
left <> right =

case left of
[] -> right
(h:t) -> h : (t <> right)

Left identity: [] ++ y = y

Right identity: x ++ [] = x

Associativity: (x ++ y) ++ z = x ++ (y ++ z)

instance Monoid [a] where
mempty = []
left <> right =

case left of
[] -> right
(h:t) -> h : (t <> right)

Left identity: [] ++ y = y

Right identity: x ++ [] = x

Associativity: (x ++ y) ++ z = x ++ (y ++ z)

greeting :: [Char] -> [Char]

greeting name =
"(" <> "Hello, " <> name <> ", how are you?" <> ")"

greeting :: [Char] -> [Char]

greeting name =
"(" <> "Hello, " <> name <> ", how are you?" <> ")"

between op cl x =
op <> x <> cl

greeting :: [Char] -> [Char]

greeting name =
between "(" ")" $

"Hello, " <> name <> ", how are you?"

between op cl x =
op <> x <> cl

greeting :: [Char] -> [Char]

greeting name =
between "(" ")" $

between "Hello, " ", how are you?"
name

between op cl x =
op <> x <> cl

"("

<>

<>

"Hello, " <>

name <>

", how are you?" ")"

"("

<>

<>

"Hello, " <>

name ", how are you?"

")"<>

Laws let us refactor and reuse more

([1,2,3] <> [4,5,6]) <> [7,8,9]

:(

([1,2,3] <> [4,5,6]) <> [7,8,9]

:(

1 2 3: : :Nil 4 5 6: :Nil 7 8 9: :Nil: :

1 2 3: : :Nil 4 5 6: :Nil

1 :

7 8 9: :Nil: :

1 2 3: : :Nil 4 5 6: :Nil

1 2: :

7 8 9: :Nil: :

1 2 3: : :Nil 4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil

1 :

: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil

1 2: :

: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil

1 2 3: : :

: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil

1 2 3: : : 4 :

: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil

1 2 3: : : 4 5: :

: :

4 5 6: :Nil

1 2 3: : :

7 8 9: :Nil

1 2 3: : : 4 5 6: : :

: :

data DList a

instance Monoid (DList a) -- O(1) append

fromList :: [a] -> DList a -- O(1)
toList :: DList a -> [a] -- O(n)

data DList a

instance Monoid (DList a) -- O(1) append

fromList :: [a] -> DList a -- O(1)
toList :: DList a -> [a] -- O(n)

data DList a

instance Monoid (DList a) -- O(1) append

fromList :: [a] -> DList a -- O(1)
toList :: DList a -> [a] -- O(n)

result :: [a]
result = (((((((x <> y) <> z) <> ...

appended :: DList a
appended = (((((((fromList x <> fromList y) <> fromList z) <> ...

result' :: [a]
result' = toList appended

result :: [a]
result = (((((((x <> y) <> z) <> ...

appended :: DList a
appended = (((((((fromList x <> fromList y) <> fromList z) <> ...

result' :: [a]
result' = toList appended

list list

O(n2)
left-associated appends

list list

O(n2)

DList

O(n)

left-associated appends

fromList

list list

O(n2)

DList DList

O(n)

O(n)

left-associated appends

left-associated appends

fromList

list list

O(n2)

DList DList

O(n)

O(n)

O(n)

left-associated appends

left-associated appends

toListfromList

Optimisation is altering the program
to get the same answer

more efficiently

toList is the left inverse of fromList

toList (fromList x) = x

fromList is a monoid homomorphism

fromList :: [a] -> DList a

fromList mempty = mempty

fromList(x <> y) = fromList x <> fromList y

fromList is a monoid homomorphism

fromList :: [a] -> DList a

fromList mempty = mempty

fromList(x <> y) = fromList x <> fromList y

phantom

x <> y <> z

phantom

x <> y <> z

Left inverse: toList (fromList (x)) = x

phantom

toList (fromList (x <> y <> z))

Left inverse: toList (fromList (x)) = x

phantom

toList (fromList (x <> y <> z))

Monoid homomorphism: fromList (x <> y <> z)

= fromList x <> fromList y <> fromList z

phantom

toList (fromList x <> fromList y <> fromList z)

Monoid homomorphism: fromList (x <> y <> z)

= fromList x <> fromList y <> fromList z

What about a world without laws?

class Default a where
def :: a

instance Default [a] where
def = []

instance Default Int where
def = 0

class Default a where
def :: a

instance Default [a] where
def = []

instance Default Int where
def = 0

class Default a where
def :: a

instance Default [a] where
def = []

instance Default Int where
def = 0

orDefault :: Default a => Maybe a -> a
orDefault ma =

case ma of
Just a -> a
Nothing -> def

orElse :: a -> Maybe a -> a
orElse d ma =

case ma of
Just a -> a
Nothing -> d

orDefault :: Default a => Maybe a -> a
orDefault ma =

case ma of
Just a -> a
Nothing -> def

orElse :: a -> Maybe a -> a
orElse d ma =
case ma of
Just a -> a
Nothing -> d

-- | Current default -1 chosen by ertes,
-- the largest negative number.
instance Default Int64 where
def = -1

-- | Current default 'False' chosen by ertes,
-- the answer to the question
-- whether mniip has a favourite 'Bool'.
instance Default Bool where
def = False

instance Default String where
def = "Call me Ishmael. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world."

-- | Current default -1 chosen by ertes,
-- the largest negative number.
instance Default Int64 where
def = -1

-- | Current default 'False' chosen by ertes,
-- the answer to the question
-- whether mniip has a favourite 'Bool'.
instance Default Bool where
def = False

instance Default String where
def = "Call me Ishmael. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world."

-- | Current default -1 chosen by ertes,
-- the largest negative number.
instance Default Int64 where
def = -1

-- | Current default 'False' chosen by ertes,
-- the answer to the question
-- whether mniip has a favourite 'Bool'.
instance Default Bool where
def = False

instance Default String where
def = "Call me Ishmael. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world."

How do I know whether I obey the laws?

QuickCheck + checkers

Property-based testing for laws!

monoid :: (Monoid a, Show a, Arbitrary a, EqProp a)
=> a -> TestBatch

functor :: (Functor t,
Arbitrary a, Arbitrary b, Arbitrary c,
CoArbitrary a, CoArbitrary b,
Show (t a),
Arbitrary (t a), EqProp (t a), EqProp (t c))

=> t (a, b, c) -> TestBatch

monoid :: (Monoid a, Show a, Arbitrary a, EqProp a)
=> a -> TestBatch

functor :: (Functor t,
Arbitrary a, Arbitrary b, Arbitrary c,
CoArbitrary a, CoArbitrary b,
Show (t a),
Arbitrary (t a), EqProp (t a), EqProp (t c))

=> t (a, b, c) -> TestBatch

data Subtraction = Subt Int

-- totally dodgy
instance Monoid Subtraction where
mempty = Subt 0
Subt x <> Subt y = Subt (x - y)

main :: IO ()
main = do
quickBatch (monoid (Sum 0))
quickBatch (monoid (Subt 0))

data Subtraction = Subt Int

-- totally dodgy
instance Monoid Subtraction where
mempty = Subt 0
Subt x <> Subt y = Subt (x - y)

main :: IO ()
main = do

quickBatch (monoid (Sum 0))
quickBatch (monoid (Subt 0))

Sum monoid:
left identity: +++ OK, passed 500 tests.
right identity: +++ OK, passed 500 tests.
associativity: +++ OK, passed 500 tests.

Subtraction "monoid":
left identity: *** Failed! Falsifiable (after 2 tests)
right identity: +++ OK, passed 500 tests.
associativity: *** Failed! Falsifiable (after 2 tests)

Laws give rise to useful functions

Laws allow us to refactor more

Laws help us to optimise

Laws are the difference between
an overloaded name
and an abstraction

Thanks for listening!

References

• Daniel J. Velleman “How To Prove It”
• Edward Kmett “Introduction to Monoids” http://comonad.com/reader/
wp-content/uploads/2009/08/IntroductionToMonoids.pdf

• Tom Ellis “Demystifying DList”
http://h2.jaguarpaw.co.uk/posts/demystifying-dlist/

• Edward Kmett “Why not Pointed?”
https://wiki.haskell.org/Why_not_Pointed%3F

• Tim Humphries “Continuations All The Way Down”
http://lambdajam.yowconference.com.au/slides/yowlambdajam2017/
Humphries-ContinuationsAllTheWayDown.pdf

• Edward Kmett “The Free Theorem for fmap”
https://www.schoolofhaskell.com/user/edwardk/snippets/fmap

http://comonad.com/reader/wp-content/uploads/2009/08/IntroductionToMonoids.pdf
http://comonad.com/reader/wp-content/uploads/2009/08/IntroductionToMonoids.pdf
http://h2.jaguarpaw.co.uk/posts/demystifying-dlist/
https://wiki.haskell.org/Why_not_Pointed%3F
http://lambdajam.yowconference.com.au/slides/yowlambdajam2017/Humphries-ContinuationsAllTheWayDown.pdf
http://lambdajam.yowconference.com.au/slides/yowlambdajam2017/Humphries-ContinuationsAllTheWayDown.pdf
https://www.schoolofhaskell.com/user/edwardk/snippets/fmap

What’s up with Foldable?

It sort of has laws.

• Gershom Bazerman wrote a paper:
http://gbaz.github.io/slides/buildable2014.pdf

• Then started a mailing list discussion:
https://mail.haskell.org/pipermail/libraries/2015-February/
024943.html

• . . . and then another one:
https://mail.haskell.org/pipermail/libraries/2018-May/
028761.html

http://gbaz.github.io/slides/buildable2014.pdf
https://mail.haskell.org/pipermail/libraries/2015-February/024943.html
https://mail.haskell.org/pipermail/libraries/2015-February/024943.html
https://mail.haskell.org/pipermail/libraries/2018-May/028761.html
https://mail.haskell.org/pipermail/libraries/2018-May/028761.html

Are there reasonable cases of law breakage?

Yes! Both QuickCheck and hedgehog break the Applicative and Monad laws

Are there reasonable cases of law breakage?

Yes! Both QuickCheck and hedgehog break the Applicative and Monad laws

