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What?
Why?



Beginnings as early as the 1970’s at MIT
• Guy L. Steele Jr.
• Gerald J. Sussman
• Richard Stallman

More recently:
• Alexey Radul
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(define (map f xs)
(cond ((null? xs) ’())

(else (cons (f (car xs))
(map f (cdr xs)))))))



And then
• Edward Kmett

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

x ≤ y =⇒ f (x) ≤ f (y)



They’re related to many areas of research, including:

• Logic programming (particularly Datalog)
• Constraint solvers
• Conflict-Free Replicated Datatypes
• LVars
• Programming language theory
• And spreadsheets!

They have advantages:

• are extremely expressive
• lend themselves to parallel and distributed evaluation
• allow different strategies of problem-solving to cooperate



Propagators



The propagator model is a model of computation
We model computations as propagator networks

A propagator network comprises
• cells
• propagators
• connections between cells and propagators
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Propagators let us express bidirectional relationships!



°F = °C × 9
5 + 32

C

×

9/5

+

32

F



°F = °C × 9
5 + 32

24.0

C

×

9/5

+

32

F



°F = °C × 9
5 + 32

24.0

C

×

9/5

43.2 +

32

F



°F = °C × 9
5 + 32

24.0

C

×

9/5

43.2 +

32

75.2

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

C

×

9/5

+

32

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

C

×

9/5

+

32

75.2

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

43.2

C

×

9/5

+

32

75.2

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷

24.0

-

43.2

C

×

9/5

+

32

75.2

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

C

×

9/5

+

32

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

43.2

C

×

9/5

+

32

F



°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷

24.0

-

43.2

C

×

9/5

+

32

75.2

F



÷ -

C

×

9/5

-

-

+

32

F

3.0

+



÷ -

C

×

9/5

-

-

+

32

75.2

F

3.0

+



÷ -

43.2

C

×

9/5

-

-

+

32

75.2

F

3.0

+



÷

24.0

-

43.2

C

×

9/5

-

-

+

32

75.2

F

3.0

+



÷

24.0

-

43.2

C

×

9/5

-

-

+

32

75.2

F

3.0

21.0

+



We can combine networks into larger networks!
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Cells accumulate information about a value





























Cells accumulate information in a bounded join-semilattice

A bounded join-semilattice is:

• A partially ordered set
• with a least element
• such that any subset of elements has a least upper bound

“Least upper bound” is denoted as ∨ and is usually pronounced “join”
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∨ has useful algebraic properties. It is:

• A monoid
• that’s commutative
• and idempotent



Left identity
ε ∨ x = x

Right identity
x ∨ ε = x

Associativity
(x ∨ y) ∨ z = x ∨ (y ∨ z)

Commutative
x ∨ y = y ∨ x

Idempotent
x ∨ x = x



class BoundedJoinSemilattice a where
bottom :: a
(\/) :: a -> a -> a

data SudokuVal = One | Two | Three | Four
deriving (Eq, Ord, Show)

newtype SudokuSet = S (Set SudokuVal)

instance BoundedJoinSemilattice SudokuSet where
bottom = S (Set.fromList [One, Two, Three, Four])
S a \/ S b = S (Set.intersection a b)
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We don’t write values directly to cells
Instead we join information in

This makes our propagators monotone, meaning that as the input cells gain information, the
output cells gain information (or don’t change)

A function f : A→ B where A and B are partially ordered sets is monotone if and only if,
for all x, y ∈ A. x ≤ y =⇒ f(x) ≤ f(y)
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All our lattices so far have been fininte
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Thanks to these properties:
• the bounded join-semilattice laws
• the finiteness of our lattice
• the monotonicity of our propagators

our propagator networks will yield with a deterministic answer, in finite time, regardless of
parallelism and distribution

Bounded join-semilattices are already popular in the distributed systems world
See: Conflict Free Replicated Datatypes

We can relax these constraints in a few different directions
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Our lattices only need the ascending chain condition

Contradiction

... -2 -1 0 1 2 ...

Unknown
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data Perhaps a = Unknown | Known a | Contradiction

instance Eq a => BoundedJoinSemiLattice (Perhaps a) where

bottom = Unknown

(\/) Unknown x = x
(\/) x Unknown = x
(\/) Contradiction _ = Contradiction
(\/) _ Contradiction = Contradiction
(\/) (Known a) (Known b) =
if a == b

then Known a
else Contradiction
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There are loads of other bounded join-semilattices too!



[1, 5]



[1, 5] ∩ [2, 7] = [2, 5]

[2, 5] + [9, 10] = [11, 15]
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We can use this to combine multiple imprecise measurements



What other bounded join-semilattices are there?
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• Perhaps

And so many more!
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If we track the provenance of information,
we can help identify the source of contradiction

Then we can keep track of which subsets of the information are consistent

and which are inconsistent
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This concept is something called a Truth Management System



Now that we can handle contradiction, we can make guesses!

This lets us encode search problems easily
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We can relax some of our conditions in certain circumstances



...
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-2 -1 0 1 2 ...



We can turn any expression tree into a propagator network
There will only ever be one writer to a cell

(5 + 2)× (x + y)
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+
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+

y



Wrapping up



Alexey Radul’s work on propagators:

• Art of the Propagator
http://web.mit.edu/~axch/www/art.pdf

• Propagation Networks: A Flexible and Expressive Substrate for Computation
http://web.mit.edu/~axch/www/phd-thesis.pdf

http://web.mit.edu/~axch/www/art.pdf
http://web.mit.edu/~axch/www/phd-thesis.pdf


Lindsey Kuper’s work on LVars is closely related, and works today:

• Lattice-Based Data Structures for Deterministic Parallel and Distributed Programming
https://www.cs.indiana.edu/~lkuper/papers/
lindsey-kuper-dissertation.pdf

• lvish library
https://hackage.haskell.org/package/lvish

https://www.cs.indiana.edu/~lkuper/papers/lindsey-kuper-dissertation.pdf
https://www.cs.indiana.edu/~lkuper/papers/lindsey-kuper-dissertation.pdf
https://hackage.haskell.org/package/lvish


Edward Kmett has worked on:

• Making propagators go fast
• Scheduling strategies and garbage collection
• Relaxing requirements (Eg. not requiring a full join-semilattice, admitting non-monotone
functions)

Ed’s stuff:
• http://github.com/ekmett/propagators

• http://github.com/ekmett/concurrent

• Lambda Jam talk (Normal mode):
https://www.youtube.com/watch?v=acZkF6Q2XKs

• Boston Haskell talk (Hard mode):
https://www.youtube.com/watch?v=DyPzPeOPgUE

http://github.com/ekmett/propagators
http://github.com/ekmett/concurrent
https://www.youtube.com/watch?v=acZkF6Q2XKs
https://www.youtube.com/watch?v=DyPzPeOPgUE


In conclusion, propagator networks:

• Admit any Haskell function you can write today . . .
• . . . and more functions!
• compute bidirectionally
• give us constraint solving and search
• mix all this stuff together
• parallelise and distribute



Thanks for listening!


