
Propagators: An Introduction

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

14th November 2017

george.wilson@data61.csiro.au

What?
Why?

Beginnings as early as the 1970’s at MIT
• Guy L. Steele Jr.
• Gerald J. Sussman
• Richard Stallman

More recently:
• Alexey Radul

V2

Vout

V1

R1

R1

Rgain

R2 R3

R2 R3

(define (map f xs)
(cond ((null? xs) ’())

(else (cons (f (car xs))
(map f (cdr xs)))))))

And then
• Edward Kmett

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

x ≤ y =⇒ f (x) ≤ f (y)

They’re related to many areas of research, including:

• Logic programming (particularly Datalog)
• Constraint solvers
• Conflict-Free Replicated Datatypes
• LVars
• Programming language theory
• And spreadsheets!

They have advantages:

• are extremely expressive
• lend themselves to parallel and distributed evaluation
• allow different strategies of problem-solving to cooperate

Propagators

The propagator model is a model of computation
We model computations as propagator networks

A propagator network comprises
• cells
• propagators
• connections between cells and propagators

The propagator model is a model of computation
We model computations as propagator networks

A propagator network comprises
• cells
• propagators
• connections between cells and propagators

3

toUpper

toUpper

'q' toUpper

'q' toUpper 'Q'

+

3

+

3

+

4

3

+

4

7

z ← x + y

z = x + y

7 = x + 4

7 = 3 + 4

z = x + y

z ← x + y

x← z − y

y ← z − x

-

+

-

-

+

4

-

-

+ 7

4

-

3

-

+ 7

4

-

Propagators let us express bidirectional relationships!

°F = °C × 9
5 + 32

C

×

9/5

+

32

F

°F = °C × 9
5 + 32

24.0

C

×

9/5

+

32

F

°F = °C × 9
5 + 32

24.0

C

×

9/5

43.2 +

32

F

°F = °C × 9
5 + 32

24.0

C

×

9/5

43.2 +

32

75.2

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

C

×

9/5

+

32

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

C

×

9/5

+

32

75.2

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

43.2

C

×

9/5

+

32

75.2

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷

24.0

-

43.2

C

×

9/5

+

32

75.2

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

C

×

9/5

+

32

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷ -

43.2

C

×

9/5

+

32

F

°F = °C × 9
5 + 32

°C = (°F − 32)÷ 9
5

÷

24.0

-

43.2

C

×

9/5

+

32

75.2

F

÷ -

C

×

9/5

-

-

+

32

F

3.0

+

÷ -

C

×

9/5

-

-

+

32

75.2

F

3.0

+

÷ -

43.2

C

×

9/5

-

-

+

32

75.2

F

3.0

+

÷

24.0

-

43.2

C

×

9/5

-

-

+

32

75.2

F

3.0

+

÷

24.0

-

43.2

C

×

9/5

-

-

+

32

75.2

F

3.0

21.0

+

We can combine networks into larger networks!

?

Cells accumulate information about a value

Cells accumulate information in a bounded join-semilattice

A bounded join-semilattice is:

• A partially ordered set
• with a least element
• such that any subset of elements has a least upper bound

“Least upper bound” is denoted as ∨ and is usually pronounced “join”

Cells accumulate information in a bounded join-semilattice

A bounded join-semilattice is:

• A partially ordered set
• with a least element
• such that any subset of elements has a least upper bound

“Least upper bound” is denoted as ∨ and is usually pronounced “join”

Cells accumulate information in a bounded join-semilattice

A bounded join-semilattice is:

• A partially ordered set
• with a least element
• such that any subset of elements has a least upper bound

“Least upper bound” is denoted as ∨ and is usually pronounced “join”

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

More information

Less information

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

More information

Less information

∨ has useful algebraic properties. It is:

• A monoid
• that’s commutative
• and idempotent

Left identity
ε ∨ x = x

Right identity
x ∨ ε = x

Associativity
(x ∨ y) ∨ z = x ∨ (y ∨ z)

Commutative
x ∨ y = y ∨ x

Idempotent
x ∨ x = x

class BoundedJoinSemilattice a where
bottom :: a
(\/) :: a -> a -> a

data SudokuVal = One | Two | Three | Four
deriving (Eq, Ord, Show)

newtype SudokuSet = S (Set SudokuVal)

instance BoundedJoinSemilattice SudokuSet where
bottom = S (Set.fromList [One, Two, Three, Four])
S a \/ S b = S (Set.intersection a b)

class BoundedJoinSemilattice a where
bottom :: a
(\/) :: a -> a -> a

data SudokuVal = One | Two | Three | Four
deriving (Eq, Ord, Show)

newtype SudokuSet = S (Set SudokuVal)

instance BoundedJoinSemilattice SudokuSet where
bottom = S (Set.fromList [One, Two, Three, Four])
S a \/ S b = S (Set.intersection a b)

class BoundedJoinSemilattice a where
bottom :: a
(\/) :: a -> a -> a

data SudokuVal = One | Two | Three | Four
deriving (Eq, Ord, Show)

newtype SudokuSet = S (Set SudokuVal)

instance BoundedJoinSemilattice SudokuSet where
bottom = S (Set.fromList [One, Two, Three, Four])
S a \/ S b = S (Set.intersection a b)

class BoundedJoinSemilattice a where
bottom :: a
(\/) :: a -> a -> a

data SudokuVal = One | Two | Three | Four
deriving (Eq, Ord, Show)

newtype SudokuSet = S (Set SudokuVal)

instance BoundedJoinSemilattice SudokuSet where
bottom = S (Set.fromList [One, Two, Three, Four])
S a \/ S b = S (Set.intersection a b)

We don’t write values directly to cells
Instead we join information in

This makes our propagators monotone, meaning that as the input cells gain information, the
output cells gain information (or don’t change)

A function f : A→ B where A and B are partially ordered sets is monotone if and only if,
for all x, y ∈ A. x ≤ y =⇒ f(x) ≤ f(y)

We don’t write values directly to cells
Instead we join information in

This makes our propagators monotone, meaning that as the input cells gain information, the
output cells gain information (or don’t change)

A function f : A→ B where A and B are partially ordered sets is monotone if and only if,
for all x, y ∈ A. x ≤ y =⇒ f(x) ≤ f(y)

We don’t write values directly to cells
Instead we join information in

This makes our propagators monotone, meaning that as the input cells gain information, the
output cells gain information (or don’t change)

A function f : A→ B where A and B are partially ordered sets is monotone if and only if,
for all x, y ∈ A. x ≤ y =⇒ f(x) ≤ f(y)

All our lattices so far have been fininte

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Thanks to these properties:
• the bounded join-semilattice laws
• the finiteness of our lattice
• the monotonicity of our propagators

our propagator networks will yield with a deterministic answer, in finite time, regardless of
parallelism and distribution

Bounded join-semilattices are already popular in the distributed systems world
See: Conflict Free Replicated Datatypes

We can relax these constraints in a few different directions

Thanks to these properties:
• the bounded join-semilattice laws
• the finiteness of our lattice
• the monotonicity of our propagators

our propagator networks will yield with a deterministic answer, in finite time, regardless of
parallelism and distribution

Bounded join-semilattices are already popular in the distributed systems world
See: Conflict Free Replicated Datatypes

We can relax these constraints in a few different directions

Thanks to these properties:
• the bounded join-semilattice laws
• the finiteness of our lattice
• the monotonicity of our propagators

our propagator networks will yield with a deterministic answer, in finite time, regardless of
parallelism and distribution

Bounded join-semilattices are already popular in the distributed systems world
See: Conflict Free Replicated Datatypes

We can relax these constraints in a few different directions

Our lattices only need the ascending chain condition

Contradiction

... -2 -1 0 1 2 ...

Unknown

?

3

-

+

4

-

data Perhaps a = Unknown | Known a | Contradiction

instance Eq a => BoundedJoinSemiLattice (Perhaps a) where

bottom = Unknown

(\/) Unknown x = x
(\/) x Unknown = x
(\/) Contradiction _ = Contradiction
(\/) _ Contradiction = Contradiction
(\/) (Known a) (Known b) =
if a == b

then Known a
else Contradiction

data Perhaps a = Unknown | Known a | Contradiction

instance Eq a => BoundedJoinSemiLattice (Perhaps a) where

bottom = Unknown

(\/) Unknown x = x
(\/) x Unknown = x
(\/) Contradiction _ = Contradiction
(\/) _ Contradiction = Contradiction
(\/) (Known a) (Known b) =
if a == b

then Known a
else Contradiction

Contradiction

... -2 -1 0 1 2 ...

Unknown

More information

Less information

Contradiction

... -2 -1 0 1 2 ...

Unknown

More information

Less information

Known 3

-

+ Unknown

Known 4

-

Known 3

-

+ Known 7

Known 4

-

Known 3

+

Known 4

Unknown

+

Known 6 Known 6

Known 3

+

Known 4

Known 12 \/ Unknown

+

Known 6 Known 6

Known 3

+

Known 4

Known 7 \/ Known 12 \/ Unknown

+

Known 6 Known 6

Known 3

+

Known 4

Known 7 \/ Known 12

+

Known 6 Known 6

Known 3

+

Known 4

Contradiction

+

Known 6 Known 6

There are loads of other bounded join-semilattices too!

[1, 5]

[1, 5] ∩ [2, 7] = [2, 5]

[2, 5] + [9, 10] = [11, 15]

[1, 5] ∩ [2, 7] = [2, 5]

[2, 5] + [9, 10] = [11, 15]

[2,5]

+

[9,10]

[-∞,∞]

[2,5]

+

[9,10]

[11,15]

We can use this to combine multiple imprecise measurements

What other bounded join-semilattices are there?

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4}{2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

• Set intersection or union
• Interval intersection
• Perhaps

And so many more!

?

• Set intersection or union
• Interval intersection
• Perhaps

And so many more!

?

What happens when we hit contradiction?

:(

What happens when we hit contradiction?

:(

If we track the provenance of information,
we can help identify the source of contradiction

Then we can keep track of which subsets of the information are consistent

and which are inconsistent

If we track the provenance of information,
we can help identify the source of contradiction

Then we can keep track of which subsets of the information are consistent

and which are inconsistent

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

[2, 5] ∩ [3, 7] ∩ [6, 9] = []

[2, 5] ∩ [3, 7] = [3, 5]

[3, 7] ∩ [6, 9] = [6, 7]

[2, 5] ∩ [6, 9] = []

Consistent subsets:
{}
{[2, 5]}
{[3, 7]}
{[6, 9]}

{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Maximal consistent subsets:
{[2, 5], [3, 7]}
{[3, 7], [6, 9]}

Inconsistent subsets:
{[2, 5], [6, 9]}

{[2, 5], [3, 7], [6, 9]}

Minimal inconsistent
subsets:

{[2, 5], [6, 9]}

This concept is something called a Truth Management System

Now that we can handle contradiction, we can make guesses!

This lets us encode search problems easily

Now that we can handle contradiction, we can make guesses!

This lets us encode search problems easily

?

We can relax some of our conditions in certain circumstances

...

⊥

-2 -1 0 1 2 ...

We can turn any expression tree into a propagator network
There will only ever be one writer to a cell

(5 + 2)× (x + y)

5

+

2

×

x

+

y

Wrapping up

Alexey Radul’s work on propagators:

• Art of the Propagator
http://web.mit.edu/~axch/www/art.pdf

• Propagation Networks: A Flexible and Expressive Substrate for Computation
http://web.mit.edu/~axch/www/phd-thesis.pdf

http://web.mit.edu/~axch/www/art.pdf
http://web.mit.edu/~axch/www/phd-thesis.pdf

Lindsey Kuper’s work on LVars is closely related, and works today:

• Lattice-Based Data Structures for Deterministic Parallel and Distributed Programming
https://www.cs.indiana.edu/~lkuper/papers/
lindsey-kuper-dissertation.pdf

• lvish library
https://hackage.haskell.org/package/lvish

https://www.cs.indiana.edu/~lkuper/papers/lindsey-kuper-dissertation.pdf
https://www.cs.indiana.edu/~lkuper/papers/lindsey-kuper-dissertation.pdf
https://hackage.haskell.org/package/lvish

Edward Kmett has worked on:

• Making propagators go fast
• Scheduling strategies and garbage collection
• Relaxing requirements (Eg. not requiring a full join-semilattice, admitting non-monotone
functions)

Ed’s stuff:
• http://github.com/ekmett/propagators

• http://github.com/ekmett/concurrent

• Lambda Jam talk (Normal mode):
https://www.youtube.com/watch?v=acZkF6Q2XKs

• Boston Haskell talk (Hard mode):
https://www.youtube.com/watch?v=DyPzPeOPgUE

http://github.com/ekmett/propagators
http://github.com/ekmett/concurrent
https://www.youtube.com/watch?v=acZkF6Q2XKs
https://www.youtube.com/watch?v=DyPzPeOPgUE

In conclusion, propagator networks:

• Admit any Haskell function you can write today . . .
• . . . and more functions!
• compute bidirectionally
• give us constraint solving and search
• mix all this stuff together
• parallelise and distribute

Thanks for listening!

