Type Class: The Ultimate Ad Hoc

George Wilson

Data61/CSIRO

george.wilson@databl.csiro.au

August 28, 2017

george.wilson@data61.csiro.au

Type classes are a language feature

» Haskell
» Purescript
» Eta

» Clean
or sometimes a design pattern

» Scala

Polymorphism

Something which is polymorphic has many shapes

Polymorphism is good

» less duplication
> more reuse

» many other benefits

Broadly speaking there are two major forms of polymorphism in programming:

» parametric polymorphism

» ad-hoc polymorphism

A parametrically polymorphic type has at least one type parameter which can be instantiated
to any type.

Example:

reverse :: [a] =-> [a]

An ad-hocly polymorphic type can be instantiated to some different types,
and may behave differently for each type

Example:

» . George Wilson @GeorgeTalksCode - Jul 31
\4 "The reverse function is _parametrically polymorphic_"

Is "parametrically” a word? If not, how to phrase it?
#ip #grammar

©Os u v 1l
@@ George Wilson
' @GeorgeTalksCode
Hard mode:
"The sum function is _ad-hocly
polymorphic_"?
Surely that can't be cromulent.

4:52 PM - 31 Jul 2017

O 2 (3 V) If

“[...] exhibits ad-hoc polymorphism”

Programmers discussing programming

Programmers discussing grammar

Interfaces

interface Equal<A> {
public boolean eg (A other);

interface Equal<A> {
public boolean eg (A other);
}

class Person {
public int age;
public String name;

interface Equal<A> {
public boolean eg (A other);
}

class Person implements Equal<Person> {
public int age;
public String name;

public boolean eqg(Person other) {
return this.age == other.age && this.name.equals (other.name);

static <A extends Equal<A>> boolean elementOf (A a, List<A> list) {
for (A element : list) {
if (a.eg(element)) return true;

}
return false;

"hello".eg("hello")

package java.lang;

class String {
private char[] value;
// other definitions

package java.lang;

class String implements Equal<String> {
private char[] value;
// other definitions

Y

Y

class List<A> {
// implementation details

class List<A> implements Equal<List<A>> {
// implementation details

public boolean eqg(List<A> other) {
// implementation. ..

Y

Y

Y

Y

Y

Y

Y

Y

\ 4

Y

\ 4

Y

class List<A> implements Equal<List<A>> {
// implementation details

public boolean eqg(List<A> other) {
// implementation. ..
// ... but how do we compare A for equality?

» Interface implementation can’t be conditional

» We can only implement interfaces for types we control

Type Classes

class Equal a where
eq :: a —> a —> Bool

class Equal a where
eq :: a —> a —> Bool

data Person = Person {
age :: Int
, hame :: String

}

class Equal a where
eq :: a —> a —> Bool

data Person = Person {
age :: Int
, hame :: String

}

instance Equal Person where

eq pl p2 = eq (age pl) (age p2)

£6 eq

(name pl)

(name p2)

elementOf :: Equal a => a -> [a] —-> Bool
elementOf a list =
case list of
[] —-> False
(h:t) => eg a h || elementOf a t

Instances can be constrained

instance (Equal a)
eq [] []
eq (x:xs) []
eq [] (y:ys)
eq (x:xs) (y:ys)

=> Equal [a] where

True
False
False
eq x y && eqg xs ys

Instances can be constrained

instance (Equal a) => Equal [a] where

eq [] [] = True
eq (x:xs) [] = False
eq [] (y:ys) = False
eq (x:xs) (y:ys) = eqg x y && eq Xs ys

We can add type class instances for types we didn't write

Some benefits:
» You can write instances for types you did not write

» Instances can depend on other instances

Compared to Interfaces:
» More expressive

» More modular

Type classes have restrictions in order to enforce type class coherence

Informally, coherence means:
» for a given type class for a given type, there is zero or one instance
» no matter how you ask for an instance, you get the same one

» if an instance exists, you can't not get it

There are exactly two places a type class instance is allowed to exist

Person.hs

data Person = Person
{ age: Int
, hame: String }

instance Equal Person where
eq pl p2 =

class Equal a where

eq

a —> a —> Bool

There are exactly two places a type class instance is allowed to exist

data Person = Person class Equal a where
{ age: Int eq :: a —> a —> Bool
, hame: String }

instance Equal Person where
eq pl p2 =

data Person = Person class Equal a where
{ age: Int eq :: a —> a —> Bool

, name: String }

EqualInstances.hs

instance Equal Person where
eq pl p2 =

data Person = Person class Equal a where
{ age: Int eq :: a —> a —> Bool
, name: String }

EqualInstances.hs

instance Equal Person where
eq pl p2 =

“Orphan instance”
Orphan instances can break coherence

Type class coherence benefits sanity:

» When you use a type class, the thing you expect happens
» Instances never depends on imports or ordering

» “plumbing” is done behind the scenes and can't go wrong

Type class coherence benefits sanity:

» When you use a type class, the thing you expect happens
» Instances never depends on imports or ordering

» “plumbing” is done behind the scenes and can't go wrong

Type class coherence rules out:

» Custom local instances

» Multiple, selectable instances

(But there are other solutions to those things)

Implicits

More Flexible Than Typeclasses™

case class Person(age: Int, name: String)

case class Person(age: Int, name: String)

trait Equal[A] {
def eg(a: A, b: A): Boolean

case class Person(age: Int, name: String)

trait Equal[A] {
def eg(a: A, b: A): Boolean

implicit def equalPerson: Equal [Person] = new Equal[Person] {
def eg(a: Person, b: Person): Boolean =
a.age == b.age && a.name == b.name

def elementOf[A] (a: A, list: List[A])
(implicit equalA: Equal[A]): Boolean = {
list match {
case Nil => false
case (h::t) => equal.eg(a, h) || elementOf(a, t)

implicit def equallist (implicit equalA: Equal[A]):

new Equal[List [A]] {

def eg(a: List[A], b: List[A]): Boolean = {
(a,b) match {
case (Nil, Nil) => true
case (x::xs, Nil) => false
case (Nil, y::ys) => false

case (x::xs, y::ys) => equalA.eqg(x,y) ||

Equal [List [A]]

eq(xs,ys)

» We can define implicits for types we did not write

» We can write implicits that depend on implicits

v

v

v

We can define implicits for types we did not write

We can write implicits that depend on implicits

No restriction on orphan instances

No restriction on number of instances

sealed trait Ordering

case object LT extends Ordering
case object EQ extends Ordering
case object GT extends Ordering

sealed trait Ordering

case object LT extends Ordering
case object EQ extends Ordering
case object GT extends Ordering

trait Order[A] {
def compare(a: A, b: A): Ordering

sealed trait Ordering

case object LT extends Ordering
case object EQ extends Ordering
case object GT extends Ordering

trait Order[A] {
def compare(a: A, b: A): Ordering

implicit def joyDivisionWithoutIan = new Order |[Person] {
def compare(a: Person, b: Person): Ordering =
intOrder.compare (a.age, b.age) match {
case LT => LT
case EQ => stringOrder.compare (a.name, b.name)
case GT => GT

def sort[A] (list: List[A]) (implicit orderA: Order[A]):

// quicksort goes here

List[A]

sort (
List (
Person (30, "Robert")
, Person (20, "John")
, Person (30, "Alfred")
)

sort (
List (
Person (30
, Person (20
, Person (30

List (
Person (20,

, Person (30,

, Person (30,

)

, "Robert")
, "John")
, "Alfred")

"John")
"Alfred")
"Robert")

Then the boss says “l| want those sorted by name”.

Then the boss says “l| want those sorted by name”.

implicit def orderPersonByName: Order |[Person] = new Order [Person] ({
def compare (a: Person, b: Person): Ordering =
stringOrder.compare (a.name, b.name) match {
case LT => LT
case EQ => intOrder.compare (a.age, b.age)
case GT => GT

sort (
List (
Person (30, "Robert")
, Person (20, "John")
, Person (30, "Alfred")
)

sort (
List (
Person (30
, Person (20
, Person (30

List (

Person (30,
, Person (20,
, Person (30,

)

, "Robert")
, "John")
, "Alfred")

"Alfred")
"John")
"Robert")

// both in scope
implicit def orderPersonByAge: Order |[Person] =
implicit def orderPersonByName: Order |[Person]| =

// what happens?
sort (persons)

// both in scope
implicit def orderPersonByAge: Order |[Person] =
implicit def orderPersonByName: Order |[Person]| =

// what happens?
sort (persons)

Hopefully a compiler error!

{1,2,3} U{4,5,6}

def emptySet[A]: Set[A]

def insert[A] (a: A, set: Set[A]) (implicit o: Order[A]): Set[A]

def isElement[A] (a: A, set: Set[A]) (implicit o: Order[A]): Boolean

Persons.scala

implicit def orderPersonByAge: Order |[Person]| =

def persons: Set[Person] =
insert (pl, insert (p2, insert (p3, emptySet)))

Recommendations when writing implicits:
» Only create instances in the file that defines the type or the “type class”

» Disallow creating more than one instance (regardless of which file you're in)

Recommendations when writing implicits:
» Only create instances in the file that defines the type or the “type class”

» Disallow creating more than one instance (regardless of which file you're in)

What about implicits in external libraries?
> Assess their usage of implicits. Do they use them as like type classes?

» If you distrust their implicits, pass everything of theirs explicitly

D.hs:11:10: error:
Duplicate instance declarations:
instance Ord Person -- Defined at D.hs:11:10
instance Ord Person —-- Defined at D.hs:14:10

03.hs:6:1: warning: [-Worphans]
Orphan instance: instance Equal Person
To avoid this
move the instance declaration to the module of the class or of the type, or
wrap the type with a newtype and declare the instance on the new type.

<no location info>: error:
Failing due to -Werror.

Type classes:
» Big wins in flexibility, expressiveness, and modularity
» Restrictions are straightforward and compiler checked

» Coherence keeps things sane

Thanks for listening!

Aspect Interfaces | Type classes | Implicits
Instance types you control v v v
Instance types you don't control X v v
Instances can depend on other instances X v v
Type-directed v v sort of
Custom local instances X X v
Coherent v v X

